Well-posedness for a higher-order Benjamin–Ono equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Well-posedness for a Higher-order Benjamin-ono Equation

In this paper we prove that the initial value problem associated to the following higher-order Benjamin-Ono equation ∂tv − bH∂ xv + a∂ xv = cv∂xv − d∂x(vH∂xv + H(v∂xv)), where x, t ∈ R, v is a real-valued function, H is the Hilbert transform, a ∈ R, b, c and d are positive constants, is locally well-posed for initial data v(0) = v0 ∈ H(R), s ≥ 2 or v0 ∈ H(R) ∩ L(R; xdx), k ∈ Z+, k ≥ 2.

متن کامل

Sharp Global Well-posedness for a Higher Order Schrödinger Equation

Using the theory of almost conserved energies and the “I-method” developed by Colliander, Keel, Staffilani, Takaoka and Tao, we prove that the initial value problem for a higher order Schrödinger equation is globally wellposed in Sobolev spaces of order s > 1/4. This result is sharp.

متن کامل

Global well-posedness and limit behavior for a higher-order Benjamin-Ono equation

In this paper, we prove that the Cauchy problem associated to the following higher-order Benjamin-Ono equation (0.1) ∂tv − bH∂ 2 x v − aǫ∂ x v = cv∂xv − dǫ∂x(vH∂xv +H(v∂xv)), is globally well-posed in the energy space H(R). Moreover, we study the limit behavior when the small positive parameter ǫ tends to zero and show that, under a condition on the coefficients a, b, c and d, the solution vǫ t...

متن کامل

Well-posedness for a Higher Order Nonlinear Schrödinger Equation in Sobolev Spaces of Negative Indices

We prove that, the initial value problem associated to ∂tu+ iα∂ 2 x u+ β∂ x u+ iγ|u|u = 0, x, t ∈ R, is locally well-posed in Hs for s > −1/4.

متن کامل

Global Well-posedness of the Cauchy Problem of a Higher-order Schrödinger Equation

We apply the I-method to prove that the Cauchy problem of a higher-order Schrödinger equation is globally well-posed in the Sobolev space Hs(R) with s > 6/7.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2011

ISSN: 0022-0396

DOI: 10.1016/j.jde.2010.08.022